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Abstract—The free-energy principle in recent studies of brain
theory and neuroscience models the perception and understanding
of the outside scene as an active inference process, in which
the brain tries to account for the visual scene with an internal
generative model. Specifically, with the internal generative model,
the brain yields corresponding predictions for its encountered
visual scenes. Then, the discrepancy between the visual input
and its brain prediction should be closely related to the quality
of perceptions. On the other hand, sparse representation has
been evidenced to resemble the strategy of the primary visual
cortex in the brain for representing natural images. With the
strong neurobiological support for sparse representation, in
this paper, we approximate the internal generative model with
sparse representation and propose an image quality metric
accordingly, which is named FSI (free-energy principle and sparse
representation-based index for image quality assessment). In FSI,
the reference and distorted images are, respectively, predicted by
the sparse representation at first. Then, the difference between
the entropies of the prediction discrepancies is defined to measure
the image quality. Experimental results on four large-scale image
databases confirm the effectiveness of the FSI and its superiority
over representative image quality assessment methods. The FSI
belongs to reduced-reference methods, and it only needs a single
number from the reference image for quality estimation.

Index Terms—Free-energy principle, image quality assessment
(IQA), reduced-reference (RR), sparse representation, visual
saliency.
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I. INTRODUCTION

IMAGE quality assessment (IQA) plays a mass of roles in
image processing applications. First, IQA can be used to

evaluate or monitor the image quality, which is the original
intention of IQA. Besides, it can also be used to control the
execution of the image processing systems. The third common
application of IQA is that it often serves as the performance
measure for various image processing algorithms, such as im-
age compression [1], restoration [2] and enhancement [3], [4]
algorithms etc. Hence, IQA becomes an important topic in both
scientific research and practical applications.

Since most digital images are ultimately consumed by hu-
mans, the most reliable way for evaluating the image quality
is the subjective assessment by humans, which refers to asking
viewers to directly rate the image quality according to their per-
ception of the images. However, this quality assessment manner
is always expensive, cumbersome and also improper for the
real-time image processing systems. To tackle this, researchers
devote to developing objective IQA methods which can auto-
matically evaluate the image quality. In this paper, we focus our
attention on objective IQA methods.

Last decades have seen a lot of sophisticated objective IQA
approaches, which in general can be divided into three cate-
gories according to the access to the reference or original im-
age, which are full-reference (FR), reduced-reference (RR) and
no-reference (NR) methods respectively. Based on the defini-
tion, FR methods assume that the reference image is completely
available when assessing the image quality. The traditional FR
method, mean-squared error (MSE) or its deduced peak signal-
to-noise ratio (PSNR) is most widely used owing to its simplicity
and clear physical meaning. However, it is also found to correlate
poorly with subjective ratings under some conditions [5]. To-
ward this end, Wang et al. proposed a structural similarity index
(SSIM) [5] to measure the image quality, which can be regarded
as a milestone in IQA studies. Specifically, the authors hypoth-
esized that the human visual system (HVS) is highly adapted to
extract structural information from the visual scene. Therefore,
measuring the structure distortion between the reference image
and distorted image can well infer the image quality. Then a
series of FR methods were proposed successively. Sheikh et al.
proposed an information fidelity criterion (IFC) by introduc-
ing information theory into IQA through quantifying the shared
information in reference and distorted images [6]. Afterwards
IFC was improved to visual information fidelity (VIF) in [7].
Visual signal-to-noise ratio (VSNR) was presented based on
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near-threshold and suprathreshold properties of the HVS [8]. A
feature similarity index (FSIM) which compares two low-level
features, namely, gradient magnitude and phase congruency, of
the reference and distorted images was proposed in [9]. The
perceptual similarity (PSIM) which fuses micro- and macro-
structures was recently developed in [10].

Compared with FR methods, NR methods are more desir-
able to provide the image quality without referencing the orig-
inal image. In literature, some representative NR methods have
also been constructed, e.g., distortion identification-based image
verity and integrity evaluation (DIIVINE) [11], NR free energy-
based robust metric (NFERM) [12], blind image integrity nota-
tor using DCT statistics (BLIINDS-II) [13], blind/referenceless
image spatial quality evaluator (BRISQUE) [14], etc. All these
methods are designed in the similar way, which is feature ex-
traction followed by training a prediction module with those
extracted features. The main difference in them concentrates on
the features they employed that characterize the image qual-
ity. For example, BLIINDS-II exploits features in the DCT
domain, while BRISQUE operates in the spatial domain. Be-
sides the aforementioned general-purpose NR methods, there
are still some methods dedicated to specific distortions, e.g.,
JPEG compression [15], [16], blur [17], [18], noise [19], con-
trast change [20], [21].

Although NR IQA doesn’t require the reference image for
quality assessment, it is still at an immature stage and keeps a
challenging task to blindly predict the image quality. A tradeoff
solution to FR IQA and NR IQA is RR IQA, which employs
partial information, or some features from the reference image
in quality computation. The essence of RR IQA lies in what fea-
tures should be extracted for precise quality estimation. In [22],
the marginal distribution of the wavelet coefficients was firstly
modeled through the generalized Gaussian distribution and the
model parameters were employed as the features to represent
the image quality. Then, this idea was further improved by in-
troducing an divisive normalization transform (DNT) step after
wavelet decomposition and the quality prediction performance
was thus enhanced [23]. In [24], the normalized histogram of the
decomposition coefficients after CSF masking and JND thresh-
olding was utilized as the RR feature. The authors in [25]
borrowed the design philosophy of SSIM and distinguished
structural and nonstructural changes of the statistical features
extracted from DNT domain to design a RR algorithm. Reduced
reference entropic differencing (RRED) [26] was proposed to
measure the differences between the entropies of wavelet coeffi-
cients of reference and distorted images. Clearly, the RR features
applied in RRED are the entropies of the image’s wavelet coef-
ficients. Xu et al. put forward a RR approach, which compares
the difference of fractal dimension between the reference and
distorted images [27]. In [28], Zhai et al. proposed free-energy-
induced distortion metric (FEDM), in which a perceptual dis-
tance between the reference and distorted images in free energy
was defined to predict the psychovisual quality of the distorted
image.

Different from most existing RR IQA methods, in this paper,
we propose a novel RR IQA metric FSI (Free-energy principle
and Sparse representation-based Index for image quality assess-

ment), which is directly derived from the perception mechanism
of the brain. On one hand, the free-energy principle models the
perception of the visual scene as an active inference process
governed by an internal generative model. Using the generative
model, the brain can actively infer predictions for the scenes.
Since nobody can have knowledge of everything in the world, the
internal generative model can’t be universal for each one. There-
fore, it’s reasonable to assume that there exists a discrepancy be-
tween the visual input and its brain prediction, which is believed
to be closely related to the quality of perceptions [12], [28],
[29]. On the other hand, sparse representation has been proven
to resemble the strategy for representing natural images in the
primary visual cortex of the brain, which is mainly expressed in
several aspects [30]–[32]: Firstly, natural images can generally
be described in terms of a small number of structural primitives,
such as edges, lines, or other elementary features, which can be
well captured by sparse representation; Secondly, the receptive
fields of simple cells in mammalian primary visual cortex can
be characterized as being spatially localized, oriented and band-
pass, which is similar to that developed by sparse representation.
Thirdly, several theoretical and computational studies have also
suggested that neurons in the brain encode visual sensory infor-
mation with a small number of active neurons at any given point
in time, which coincides with the mechanism of sparse repre-
sentation. Under these neurobiological causes, in this paper, we
approximate the internal generative model with sparse repre-
sentation and propose FSI accordingly. Specifically, in FSI, the
reference and distorted images are firstly predicted by sparse
representation. Then the difference between the entropies of the
prediction discrepancies is defined as the quality index to in-
dicate the image quality. Extensive experiments conducted on
four large-scale image databases confirm the effectiveness of
our proposed FSI and its superior performance over the com-
peting RR methods, e.g., RRED and FEDM. It should be noted
that the needed information of FSI is just one number from the
reference image.

The remainder of this paper is organized as follows. In
Section II, we review related works of IQA approaches derived
from free-energy principle and sparse representation respec-
tively. In Section III, we present the proposed metric for IQA in
detail. Experimental results and analysis are given in Section IV.
Finally, we conclude this paper in Section V.

II. RELATED WORKS

In this section, we deliver a brief review of IQA works based
on free-energy principle and sparse representation respectively.

A. IQA Approaches Based on the Free-Energy Principle

As aforementioned, the free-energy principle mainly models
the brain activities when perceiving and understanding the vi-
sual scenes, which can help us further understand the HVS and
inspire the study of new IQA algorithms.

The first IQA model based on free-energy principle is
FEDM [28] as mentioned in previous section, which can be
considered as the beginning work that introduced free-energy
principle into IQA. In FEDM, the authors firstly modeled
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the cognitive process through mathematical formulation. Then
the linear auto-regressive (AR) model was chosen to simulate the
internal generative model in the brain. At last, the differences of
free energy between the reference and distorted images was de-
fined to measure the image quality. Considering the brain works
with an internal generative mechanism for visual perception,
in [33], Wu et al. simulated the generative mechanism with AR
prediction and decomposed an image into two portions, which
are the predicted portion and the residual portion. Then they
proposed a FR IQA approach by measuring the degradations of
these two portions. As the free-energy principle indicates the
discrepancy between the image itself and its brain prediction
is correlated with the perceptual quality, Gu et al. presented a
NR IQA model [12], in which features that can measure the
prediction discrepancy, e.g., the gradient magnitude similarity,
phase congruency similarity and absolute difference between
the image and its brain prediction, were calculated for the con-
struction of the IQA model. By analysing the characteristics of
the prediction coefficients, Gu et al. proposed a NR IQA ap-
proach dedicated to assessing the image’s visual sharpness [34].
In addition, free energy was applied to measure the joint ef-
fect of multiply distortions in assessing the quality of images
degraded by multiply distortions [35].

In summary, the above works from the free-energy principle
validate that the free-energy principle can definitely prompt IQA
studies.

B. Sparse Representation-Induced IQA Models

Sparse representation refers to representing a signal with a
linear superposition of a small number of primitives. This rep-
resentation strategy has been proved to resemble the neural
behaviors in the visual cortex which is responsible for most of
our conscious perception of the visual world. Under the neuro-
biological implications, researchers have also developed sparse
representation-based IQA approaches and achieved promising
results. Here we review some of them to illustrate.

In [36], He et al. proposed a NR IQA method, in which sparse
representation is applied in two steps. First, the natural scene
statistics (NSS) features extracted from the wavelet domain were
represented by sparse representation. Second, the differential
mean opinion scores were weighted by the sparse representa-
tion coefficients to get the final quality estimation. In [37], a NR
sparse representation-based sharpness index was proposed, in
which an overcomplete dictionary was firstly trained on natural
images, then the blurred image was represented over the dictio-
nary and the normalized energy of the representation coefficients
was defined to measure the image sharpness. A sparse feature
fidelity (SFF) metric was proposed in [38]. In SFF, sparse fea-
tures were acquired by a feature detector, which is pre-trained on
natural image samples through independent component analysis
(ICA). Then the image quality was measured by comparing the
sparse features of the reference and distorted images. In [39], Qi
et al. proposed a RR stereoscopic IQA method based on monoc-
ular and binocular perceptual information, in which monocular
and binocular features extracted from sparse representation were

fed into support vector machine (SVM) to train a model which
was used to predict the stereoscopic image quality later.

III. THE PROPOSED FSI FOR IQA

A. Modelling Visual Perception Mechanism

As the free-energy principle conjectures, the cognitive pro-
cess is governed by an internal generative model in the brain.
With this internal model, the brain is able to generate the cor-
responding predictions for its encountered visual scenes. For
operational amenability, the brain internal model for visual per-
ception, denoted by G, is often supposed to be parametric, which
predicts the visual scenes by adjusting its parameters. For clear-
ness, we denote g as the parameter vector which contains all
the parameters of the model G. Therefore, given an image I , its
‘surprise’ can be computed by integrating the joint distribution
P (I,g) over the space of the parameter vector g as

− log P (I) = − log
∫

P (I,g)dg. (1)

Here we bring an auxiliary term Q(g|I) into both the denomina-
tor and numerator of the right part in (1) which doesn’t change
its equality as follows:

− log P (I) = − log
∫

Q(g|I)
P (I,g)
Q(g|I)

dg (2)

where Q(g|I) can be regarded as the posterior distribution of
the model parameters given image I , which can be thought of
as an approximate posterior to the true posterior of the model
parameters P (g|I) calculated by the brain. When perceiving
the input image I , the brain intends to minimize the discrepancy
between the approximate posterior Q(g|I) and the true posterior
P (g|I). According to Jensen’s inequality, (2) can be translated
into

− log P (I) ≤ −
∫

Q(g|I) log
P (I,g)
Q(g|I)

dg. (3)

According to statistical physics and thermodynamics [40], the
right side of equation (3) is defined as “free energy” as follows:

F (g) = −
∫

Q(g|I) log
P (I,g)
Q(g|I)

dg (4)

Clearly, F (g) defines an upper bound of ‘surprise’ for image
I . For intuitive understanding, with P (I,g) = P (g|I)P (I), we
further derive (4) as

F (g) =
∫

Q(g|I) log
Q(g|I)

P (g|I)P (I)
dg

= − log P (I) +
∫

Q(g|I) log
Q(g|I)
P (g|I)

dg

= − log P (I) + KL(Q(g|I)‖P (g|I)) (5)

where KL(·) refers to the Kullback-Leibler divergence between
the approximate posterior and the true posterior distributions and
it’s nonnegative. It is clearly seen that the free energy F (g) is
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greater than or equal to the image ‘surprise’-logP (I).1 In visual
perception, the brain tries to minimize KL(Q(g|I)‖P (g|I)) of
the divergence between the approximate posterior and its true
posterior distributions when perceiving image I .

B. The Approximation of the Internal Generative Model

The modelling of visual perception mechanism in free-energy
principle assumes that the internal model in the brain is para-
metric and it explains the encountered scenes by minimizing the
divergence between the approximate posterior and the true pos-
terior distributions of the model parameters. This formulation
models the brain perceiving an outside image in a probabilis-
tic manner. For practical and computational employment of the
free-energy principle into IQA, figuring out the brain internal
model should come to the first. However, the true form of the
internal generative model is still unknown till now. To tackle
this problem, researchers proposed to approximate the brain
model with existing image models. In the free-energy-induced
IQA works mentioned in Section II-A, the internal model G was
often approximated with the linear auto-regressive (AR) model
for its simplicity and ability to represent a wide range of natural
images, which is described as

yn = X k (yn )a + en (6)

where yn is a pixel to be predicted, X k (yn ) is the vector con-
sist of k nearest neighbors of yn , a = (a1 , a2 , ..., ak )T is the
AR coefficient vector, the superscript “T” is transpose opera-
tion. en represents the additive Gaussian noise. To acquire the
AR coefficient vector a, the following optimization problem is
presented:

a∗ = argmin
a

‖y − Xa‖2 (7)

where y = (y1 , y2 , , , yk )T and X(i, :) = X k (yi). This equa-
tion can be conveniently solved with the least square method
and the solution a∗ = (XT X)−1XT y. Here a∗ acts as the in-
ternal model parameter vector g actually. Then yn can be pre-
dicted with X k (yn )a∗. By predicting each pixel in this manner,
the whole reconstructed image can be finally obtained, which
stands for the brain prediction for the input image. Compared
to AR prediction, sparse representation denotes a new linear
strategy to represent the observed image. Suppose that x ∈ Rn

is a vectorized patch to be represented, then x can be denoted by
a linear combination of primitives from a predefined or trained
dictionary as

x = Dα + E (8)

where D is the dictionary denoted by [d1 ,d2 ,d3 ...dK ] that
contains K primitives. α = {α1 , α2 , ...αK }T denotes the rep-
resentation coefficient vector and E points out the representation
error. Here, the coefficient vector α can be regarded as the brain
model parameter vector g. Different from AR prediction, sparse

1“surprise” is also known as surprisal or negative log-evidence, which is a
measure of self-information. Here, “surprise” is defined as -logP (I), indicating
that the higher the probability that an image or a visual stimulus I is observed,
the lower its “surprise” is.

representation is performed on the basis of image patch, not
pixel, which means sparse representation can be more efficient
than the AR representation. In addition, the dictionary used in
sparse representation can be predefined or trained during the
representation process, which indicates that sparse representa-
tion is more flexible for predicting the visual scenes. The most
important point, as we stated before, sparse representation has
been verified to resemble the strategy for representing natural
images in the primary visual cortex of the brain and already
achieved success in IQA tasks. Based on these careful analysis,
in this paper, we approximate the internal generative model in
the brain with sparse representation. Specific implementation
of sparse representation for natural images and the solution to
representation coefficients will be given in the following.

C. Patch-Based Sparse Representation

According to the above analysis, we approximate the internal
generative model with sparse representation. Usually, the basic
unit in sparse representation for an image is image patch [41]–
[44]. Mathematically, given an image I , we extract a patch
xk ∈ RBs of size

√
Bs ×

√
Bs from I by

xk = Rk (I) (9)

where Rk (·) is the extraction operator that extracts the image
patch xk from image I at location k, k = 1, 2, 3...n, n gives
the total number of image patches. The transpose operation of
Rk (·), denoted by RT

k (·) is to put the image patch xk back to
the position k in the reconstructed image. With all the extracted
patches, image I can be reconstructed by

I =
n∑

k=1

RT
k (xk ).

/ n∑
k=1

RT
k (1Bs

) (10)

where the notation “./” represents the operation of element-wise
division of two vectors and 1Bs

refers to the vector of size Bs

whose elements are all 1. This equation indicates an abstraction
strategy of averaging all the patches for recovering image I .

For the specific extracted patch xk , its sparse representation
over a dictionary D ∈ RBs ×M refers to finding a sparse vector
αk ∈ RM (i.e., most of the elements in αk are zero or close to
zero) to satisfy

xk = Dαk (11)

or approximate as

xk ≈ Dαk s.t. ‖xk − Dαk‖p ≤ ξ (12)

where ‖ · ‖p refers to the lp norm. ξ is a positive threshold. What
we request for the representation coefficient vector satisfies

α∗
k = argmin

αk

‖αk‖p s.t. xk = Dαk . (13)

This equation can be transformed into an unconstrained opti-
mization problem for solving as

α∗
k = argmin

αk

1
2
‖xk − Dαk‖2 + λ‖αk‖p (14)

where the first term is the reconstruction fidelity constraint and
the second term is to punish the sparsity of the representation
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coefficient vector. λ is a positive constant for balancing the
importance of these two terms. p takes 0 or 1. If p = 0, the
sparsity of αk is strictly measured by l0-norm, which refers to
calculating the number of nonzero coefficients in αk . That’s
what we desire for the representation coefficients. However,
the l0-minimization is non-convex and NP-hard. It is usually
solved by greedy algorithms, such as the orthogonal matching
pursuit (OMP) algorithm [45]. An alternative way for solv-
ing the l0-minimization problem is to replace l0-norm with
l1-norm, namely, p = 1. Then (14) becomes l1-minimization,
which is convex and can be solved by some large-scale methods
[46]–[48].

By solving (14), we can get the corresponding representa-
tion coefficient vector α∗

k for representing the image patch xk .
Then we bring Dα∗

k , the sparse representation of xk , into (10)
leading to

I ′ =
n∑

k=1

RT
k (Dα∗

k ).
/ n∑

k=1

RT
k (1Bs

) (15)

where I ′ refers to the sparse representation for the entire image I ,
which serves as the brain prediction for image I as we supposed
before.

D. The Perceptual Quality Index

With the internal generative model, the brain yields the corre-
sponding prediction for the input image. However, the internal
model can’t be universal resulting in a discrepancy between the
image and its brain prediction. The prediction discrepancy is be-
lieved to be closely related to the quality of human perceptions.
More precisely, the quality of perceptions can be quantified
mathematically by the uncertainty of the prediction discrep-
ancy [28]. Then, the perceptual quality degradation can be mea-
sured by the uncertainty variation of the prediction discrepancy.
At first, we define the prediction residual as the discrepancy
between the image and its brain prediction as

R = |I − I ′| (16)

where R refers to the prediction residual image, I represents the
input image and I ′ represents the brain prediction of image I ,
which is obtained through sparse representation in (15). “| · |”
is the magnitude operation. The uncertainty of the prediction
discrepancy R can be measured by its entropy. Additionally, as
visual saliency studies demonstrate the HVS would selectively
pay attention to the ‘salient’ regions of the image, while pay
little attention to the visual insignificant regions [49]–[51], then
immediately calculating the entropy of R will underestimate this
characteristic as entropy is unable to discriminate visual impor-
tance. Considering this, we define a salient prediction residual
image Rs by percentile strategy which is widely adopted in IQA
algorithms [34]. Specifically, we constitute Rs by the pixels in
R that are corresponding to the l% most salient pixels of image
I . Suppose SI is the saliency map of image I , each pixel value in
SI indicates the visual importance degree of the corresponding
pixel in I . We firstly create a 0–1 value mask by

M = F(SI ) (17)

where M refers to the 0-1 mask matrix, F(·) refers to the as-
signment function that assigns 1 to M(i, j) if SI (i, j) belongs
to the l% largest values in SI , otherwise M(i, j) is assigned to
0. Then Rs can be calculated by

Rs = R. ∗ M (18)

where “.*” represents the operation of element-wise multiplica-
tion of two matrixes. In implementation, SI can be obtained in
advance by some mature saliency prediction methods, such as
GBVS [49], IS [52] etc. Next, we calculate the entropy of the
salient prediction residual image as

E = −
255∑
i=0

pi log2 pi (19)

where E gives the entropy of Rs , pi is the probability density
of ith gray scale in Rs .

As the free-energy principle indicates, the entropy E of the
prediction discrepancy can characterize image quality degrada-
tions. To illustrate this intuitively, we chose three standard ref-
erence images with their corresponding distorted images from
TID2013 database [53]. Three common distortion types were
investigated which are Addictive Gaussian noise, Gaussian blur
and JPEG compression respectively. The distortion levels are
0, 1, 2, 3, 4, 5, where 0 means no distortion and 5 refers to
the worst distortion. Then we calculated Es of all the images
and plot the results in Fig. 1. As can be observed, for the three
images under each distortion type, E changes monotonously
as the distortion level increases, which indicates E can effec-
tively capture the image quality degradations.Therefore, we can
measure the quality degradation by inspecting the variation of
E between the reference image and its corresponding distorted
image as

FSI = |Er − Ed | (20)

where Er represents E of the reference image and Ed represents
E of the corresponding distorted image. Here E can be regarded
as the RR feature which is on behalf of the image quality. It’s
clear to see that the smaller FSI is, the higher the perceptual
quality of the distorted image is. FSI equalling 0 means the
highest perceptual quality. Since FSI requires information from
the reference image for predicting the image quality, it belongs
to RR IQA methods eventually. As the needed information of the
reference image (the entropy of the salient prediction residual
image) is just a single scalar, FSI can maximally reduce the data
rate for RR quality evaluation.

IV. EXPERIMENTAL RESULTS

In this section, we will validate the effectiveness of the
proposed FSI through extensive experiments. Some important
issues about FSI will also be discussed.

A. Experimental Protocol

To test the proposed FSI, we conducted experiments on
four widely-adopted image databases, which are LIVE [56],
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Fig. 1. Scatter plots of the entropies of the salient prediction residual images (E) against different distortion levels. (a)–(c) show the three standard images from
TID2013 database which are denoted as image1, image2, and image3, respectively. (d)–(f) refer to the distortion types of Addictive Gaussian noise, Gaussian blur,
and JPEG compression, respectively. The higher the distortion level is, the worse the quality of the image is.

TID2013 [53], CSIQ [57] and Toyama [58]. A brief introduc-
tion to these four databases is listed below:

1) The LIVE database contains a total of 779 distorted
images from 29 pristine images. There are five distor-
tion types involved, which are JPEG2000 compression,
JPEG compression, white noise, gaussian blur and fast
fading.

2) The TID2013 database is composed of 3000 distorted
images which are generated from 25 reference images
with 24 distortion types at 5 distortion levels. The dis-
tortion types are addictive gaussian noise, addictive noise
in color components, spatially correlated noise, masked
noise, high frequency noise, impulse noise, quantiza-
tion noise, gaussian blur, image denoising, JPEG com-
pression, JPEG2000 compression, JPEG transmission er-
rors, JPEG2000 transmission errors, non eccentricity pat-
tern noise, local block-wise distortions of different inten-
sity, mean shift, contrast change, change of color satura-
tion, multiplicative gaussian noise, comfort noise, lossy
compression of noisy images, image color quantization
with dither, chromic aberrations, sparse sampling and
reconstruction.

3) The CSIQ database consists of 866 images distorted from
30 original images with six types of distortions, which
are JPEG compression, JPEG2000 compression, addictive
noise, global contrast decrements, additive pink gaussian
noise and gaussian blur respectively.

4) The Toyama database includes 168 distorted images gen-
erated by JPEG compression and JPEG2000 compression
respectively.

For simplifying the computational complexity and quick test,
in this paper we have only performed FSI on the luminance
channel of the image. Therefore, distortions focused on the
image chrominance were not involved in our test, which include
additive noise in color components, change of color saturation,
image color quantization with dither, chromic aberrations in
TID2013 database and additive pink gaussian noise in CSIQ
database respectively.

For evaluating the prediction performance of the ob-
jective IQA models, we employed four statistical indexes,
which are Kendall’s rank correlation coefficient (KROCC),
Spearman Rank order Correlation coefficient (SROCC), Pear-
sons linear correlation coefficient (PLCC) and root mean square
error (RMSE) respectively. The SROCC and KROCC values can
indicate the prediction monotonicity of the quality metric, PLCC
reflects the prediction accuracy and RMSE points out the pre-
diction consistency. Therefore, these four indexes demonstrate
the prediction performance from different aspects. A superior
IQA metric is expected to achieve values close to 1 in SROCC,
KROCC and PLCC, while close to 0 in RMSE.

As suggested by VQEG [59], before computing PLCC and
RMSE, the objective results are needed to be mapped to subjec-
tive ratings through nonlinear regression. Toward this end, we
apply a five-parameter logistic function as

q (z) = β1

(
1
2
− 1

1 + exp (β2 · (z − β3))

)
+ β4 · z + β5

(21)
with z and q(z) being the input objective score and the mapped
score. βj (j=1, 2, 3, 4, 5) are free parameters to be determined
during the curve fitting process.
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TABLE I
OVERALL PERFORMANCE COMPARISON ON LIVE, TID2013, CSIQ, AND TOYAMA DATABASES

Database Index PSNR SSIM [5] SFF [38] IL-NIQE [54] NFERM [12] C-DIIVINE [55] FEDM [28] RRED [26] FSI (pro.)
FR FR FR NR NR NR RR RR RR

SROCC 0.8756 0.9479 0.9649 0.8978 training training 0.7947 0.7653 0.8826
LIVE KROCC 0.6865 0.7963 0.8365 0.7128 training training 0.5964 0.5833 0.6957
(779 images) PLCC 0.8723 0.9449 0.9632 0.9025 training training 0.7976 0.6880 0.8821

RMSE 13.3597 8.9455 7.3461 11.7702 training training 16.4786 19.8278 12.8720

SROCC 0.6675 0.8018 0.8637 0.5349 0.3509 0.3810 0.1221 0.5926 0.5798
TID2013 KROCC 0.4881 0.6056 0.6736 0.3811 0.2470 0.2663 0.0827 0.4313 0.4101
(2500 images) PLCC 0.6750 0.8105 0.8778 0.6069 0.4882 0.5411 0.1842 0.6641 0.6111

RMSE 0.9270 0.7359 0.6020 0.9986 1.0965 1.0566 1.2349 0.9394 0.9945

SROCC 0.8206 0.8829 0.9656 0.8099 0.8047 0.8187 0.8308 0.6877 0.9175
CSIQ KROCC 0.6229 0.6993 0.8360 0.6209 0.6330 0.6418 0.6236 0.5015 0.7479
(716 images) PLCC 0.8018 0.8627 0.9670 0.8671 0.8798 0.8807 0.8113 0.6477 0.9265

RMSE 0.1606 0.1359 0.0685 0.1338 0.1277 0.1273 0.1571 0.2047 0.1011

SROCC 0.6132 0.8794 0.8992 0.7114 0.8498 0.8773 0.7779 0.4532 0.8014
Toyama KROCC 0.4443 0.6939 0.7217 0.5105 0.6587 0.7095 0.5864 0.3220 0.6033
(168 images) PLCC 0.6428 0.8887 0.9030 0.7247 0.8517 0.8758 0.7804 0.4972 0.8070

RMSE 0.9587 0.5738 0.5378 0.8625 0.6558 0.6041 0.7826 1.0859 0.7391

SROCC 0.7442 0.8780 0.9234 0.7385 0.6685 0.6923 0.6314 0.6247 0.7953
Dir. AVG KROCC 0.5605 0.6988 0.7670 0.5563 0.5129 0.5392 0.4723 0.4595 0.6142

PLCC 0.7480 0.8767 0.9277 0.7753 0.7399 0.7659 0.6434 0.6242 0.8067

SROCC 0.7306 0.8462 0.9016 0.6572 0.4717 0.4982 0.3963 0.6356 0.7035
Wei. AVG KROCC 0.5466 0.6610 0.7340 0.4896 0.3491 0.3678 0.2922 0.4674 0.5294

PLCC 0.7324 0.8478 0.9101 0.7117 0.5891 0.6296 0.4309 0.6590 0.7240

B. Implementation Issues

In FSI, the reference and distorted images were firstly pre-
dicted through patch-based sparse representation as described
in Section III-C. In this process, we divided the image into
8 × 8 patches, namely Bs equals 64. The overcomplete DCT
dictionary was employed as the predefined dictionary D for
sparse representation because of its wide use in image process-
ing algorithms. The dimension of D was 64 × 144 with totally
144 atoms available for representing each patch. To be specific,
D was created in line with [60], namely, forming a 1D-DCT
A1D of size 8 × 12 firstly, where the k-th atom (k=1, 2,..., 12)
is given by ak = cos((i − 1)(k − 1)π/12), i=1, 2,... 8. Then all
the atoms except the first one were disposed by removing their
mean. At last, the dictionary D was calculated by a Kronecker-
product D = A1D ⊗ A1D . In implementation, we embedded
D into the algorithm so that additional storage and transmission
for D can be saved. In (14), the parameter p was set to 0 and
this equation was solved by OMP algorithm [45]. The sparsity
(the number of nonzero coefficients for representing each patch)
was set to 6. The popular GBVS model was employed in our
proposed method for saliency prediction and the threshold l was
set to 30 experimentally. Experiments about saliency prediction
can be referred to in Section IV-G.

C. Overall Prediction Performance Evaluation

In this section, the prediction performance in terms of
SROCC, KROCC, PLCC and RMSE of the proposed FSI with
competing methods is given. The overall results are tabulated
in Table I, in which the best three results in each indice are
highlighted in boldface. As can be seen, we compare FSI with

eight representative IQA metrics, which are PSNR, SSIM [5],
SFF [38], IL-NIQE [54], NFERM [12], C-DIIVINE [55],
FEDM [28], RRED [26]. Among them, PSNR, SSIM and
SFF are the classical FR methods, IL-NIQE, NFERM and
C-DIIVINE represent state-of-the-art NR methods, FEDM
and RRED belong to RR methods. It should be noted that
RRED has different modes according to the amount of needed
information from the original image for quality estimation.
Here, we selected the mode of referencing one single scalar
from the original image, which is the same as FSI. Certainly,
there are still some other RR models as we introduced in
Section I, while their number of features extracted for IQA are
different from FSI, e.g., [24] needs 24 features, [22] needs 18
features, etc. FEDM and RRED are both in need of one feature,
therefore we include them for fair comparison. In Table I, “Dir.
AVG” refers to directly averaging indexes (SROCC, KROCC
and PLCC) over the four databases. “Wei. AVG” refers to the
weighted average with the weight determined by the number of
images in each database, which is calculated as

δ̄ =
∑

i δi · πi∑
i πi

(22)

where δ̄ is the weighted average, δi refers to one of SROCC,
KROCC and PLCC for the ith database, πi gives the number
of images in the ith database, i.e., 779 for LIVE, 2500 for
TID2013, 716 for CSIQ and 168 for Toyama. The LIVE
database is used for training a prediction model for NFERM
and C-DIIVINE. Therefore, the performance results of NFERM
and C-DIIVINE on the LIVE database are not included and their
average results are calculated over the other three databases.
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TABLE II
STATISTICAL SIGNIFICANCE COMPARISON WITH T-TEST

t-test PSNR SSIM [5] SFF [38] IL-NIQE [54] NFERM [12] C-DIIVINE [55] FEDM [28] RRED [26]
FR FR FR NR NR NR RR RR

LIVE 0 −1 −1 −1 − − 1 1
TID2013 −1 −1 −1 0 1 1 1 −1
CSIQ 1 1 −1 1 1 1 1 1
Toyama 1 −1 −1 1 0 −1 0 1

The symbol 1, 0, or −1 indicates that the proposed metric (FSI) is statistically (with 95% confidence) better, indistinguishable, or worse than the
compared metric.

Fig. 2. Scatter plots of subjective scores (DMOS) against objective scores obtained by IQA models on the CSIQ database.

Compared with the FR methods in Table I, we find that the FR
method SFF is the best performed method undoubtedly, while
the proposed method FSI still achieves better performance than
PSNR on LIVE, CSIQ and Toyama databases and outperforms
SSIM on CSIQ database, given the fact that only one num-
ber of the original image is referenced for FSI. Compared with
the NR methods, FSI is able to perform consistently well on
the four databases, while the NR methods may work better
on some database but can’t provide consistent results on other
databases. For example, C-DIIVINE achieves good results on

Toyama database, it fails to deliver equivalent performance on
TID2013 and CSIQ databases. It should be emphasized that FSI
outperforms its same kind methods FEDM and RRED remark-
ably except RRED exceeds FSI on TID2013 database.

To evaluate the statistical significance of the proposed method
with the compared approaches, we employ t-test to the obtained
scores of the objective IQA models. The statistical significance
results are reported in Table II, where the symbol “1”, “0” and
“−1” implies the proposed method is statistically (with 95%
confidence) better, indistinguishable or worse than the compared
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TABLE III
SROCC VALUES OF THE IQA METRICS ON INDIVIDUAL DISTORTION TYPES

Database Dis. Type PSNR SSIM [5] SFF [38] IL-NIQE [54] NFERM [12] C-DIIVINE [55] FEDM [28] RRED [26] FSI (pro.)
FR FR FR NR NR NR RR RR RR

FF 0.8907 0.9556 0.9529 0.8328 training training 0.8229 0.9155 0.8861
GB 0.7823 0.9517 0.9752 0.9158 training training 0.7594 0.9517 0.9642

JP2K 0.8954 0.9614 0.9672 0.8942 training training 0.9200 0.9234 0.9023
LIVE

JPEG 0.8809 0.9764 0.9786 0.9419 training training 0.9225 0.8358 0.9623
AWGN 0.9854 0.9694 0.9859 0.9807 training training 0.9152 0.9161 0.9231

Dir. AVG 0.8869 0.9629 0.9719 0.9131 training training 0.8680 0.9085 0.9276

AGN 0.9291 0.8671 0.9066 0.8760 0.8582 0.8436 0.7485 0.7496 0.7086
SCN 0.9200 0.8515 0.8982 0.9231 0.2180 0.6261 0.6920 0.7800 0.7034
MN 0.8323 0.7767 0.8185 0.5121 0.2207 0.6620 0.7189 0.4007 0.7210
HFN 0.9140 0.8634 0.8977 0.8683 0.8814 0.8824 0.7889 0.7772 0.7710
IN 0.8968 0.7503 0.7871 0.7554 0.1728 0.7354 0.7383 0.5323 0.7040
QN 0.8808 0.8657 0.8607 0.8726 0.7747 0.0963 0.0732 0.7308 0.2618
GB 0.9149 0.9668 0.9675 0.8145 0.8498 0.8698 0.8896 0.9672 0.9501

DEN 0.9480 0.9254 0.9091 0.7491 0.6389 0.8155 0.7998 0.9159 0.8312
JPEG 0.9189 0.9200 0.9273 0.8355 0.8720 0.8841 0.7832 0.6974 0.8576
JP2K 0.8840 0.9468 0.9571 0.8581 0.8097 0.9055 0.8396 0.8970 0.9060

TID2013
JGTE 0.7685 0.8493 0.8831 0.2821 0.1322 0.3246 0.7445 0.6304 0.3632
J2TE 0.8883 0.8828 0.8708 0.5243 0.1681 0.4575 0.6094 0.7211 0.6358
NEPN 0.6863 0.7821 0.7668 0.0803 0.0645 0.0675 0.5049 0.4173 0.4455
Block 0.1552 0.5720 0.1786 0.1355 0.2023 0.0239 0.5375 0.1708 0.5591
MS 0.7671 0.7752 0.6654 0.1845 0.0218 0.0320 0.5438 0.5611 0.6198
CTC 0.4400 0.3775 0.4691 0.0133 0.2185 0.4162 0.4958 0.5433 0.5683
MGN 0.8905 0.7803 0.8434 0.6924 0.7164 0.7363 0.7007 0.6905 0.6373
CN 0.8411 0.8566 0.9007 0.3600 0.1433 0.0132 0.4890 0.7182 0.5287

LCNI 0.9145 0.9057 0.9262 0.8287 0.6541 0.7001 0.6599 0.6272 0.3605
SSR 0.9042 0.9461 0.9522 0.8650 0.7850 0.8844 0.8297 0.9310 0.8815

Dir. AVG 0.8147 0.8231 0.8193 0.6015 0.4701 0.5488 0.6594 0.6730 0.6507

GCD 0.8621 0.7922 0.9536 0.4996 0.3774 0.3720 0.9550 0.9382 0.9550
JP2K 0.9361 0.9605 0.9762 0.9059 0.9048 0.8931 0.8945 0.9387 0.9342
JPEG 0.8879 0.9543 0.9641 0.8993 0.9222 0.9157 0.9166 0.8220 0.9508

CSIQ
GB 0.9291 0.9609 0.9751 0.8576 0.8964 0.9076 0.8522 0.9649 0.9634

AWGN 0.9363 0.8974 0.9469 0.8497 0.9220 0.8966 0.8246 0.8010 0.8490
Dir. AVG 0.9103 0.9131 0.9632 0.8024 0.8046 0.7970 0.8886 0.8930 0.9305

JPEG 0.2868 0.8590 0.9018 0.7091 0.8642 0.8820 0.7574 0.6352 0.8922
Toyama JP2K 0.8605 0.9399 0.9475 0.7383 0.8741 0.8744 0.8979 0.4498 0.7988

Dir. AVG 0.5737 0.8995 0.9246 0.7237 0.8691 0.8782 0.8277 0.5425 0.8455

method in each column. As can be observed in Table II, in
most cases the proposed method is better than other metrics
except SSIM and SFF over the four databases, which proves the
superiority of FSI statistically.

Furthermore, we show the scatter plots of subjective scores
against objective scores given by the IQA models on CSIQ
in Fig. 2, where the blue “+” represents the test images and
the black curves are fitted through (21). It can be observed that
the points of FSI cluster close to the fitted curve, which means the
objective scores predicted by FSI well correlate with subjective
scores.

D. Performance Comparison on Individual Distortion Types

Besides evaluating the overall performance of the IQA meth-
ods on the whole image databases, we also want to know their
prediction ability for specific distortion types. Therefore, in this
experiment, we examine the prediction performance of the IQA
metrics on each distortion type. We report the experimental
results in terms of SROCC in Table III, where the top three
methods for each distortion type are highlighted in boldface and

“Dir. AVG” refers to averaging the SROCC values over all the
distortion types in each database. There are totally 32 groups of
distorted images in this test.

In Table III, it’s obvious that the FR methods SFF, SSIM
and PSNR are the top three methods, which are marked 32, 26
and 18 times respectively. Apart from the FR methods, FSI is
marked 11 times and ranks first followed by RRED with 8 times
highlighted. Therefore, we conclude that FSI also performs well
on specific distortion types.

E. Performance Comparison between AR and
Sparse Representation

In Section III-B, we analyzed sparse representation can be
more effective and efficient than AR representation in simulat-
ing the internal generative model for quality prediction. In order
to verify this, we conducted experiments by simulating the
internal model with AR and sparse representation respectively.
Specifically, under FSI framework, we altered the prediction
manner from sparse representation to AR representation with
other operations in FSI all fixed. The sparse representation
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TABLE IV
SROCC VALUES COMPARISON BETWEEN AR AND SR ON

LIVE, TID2013, CSIQ, AND TOYAMA DATABASES

Database AR SR

LIVE 0.7665 0.8826
TID2013 0.5084 0.5798
CSIQ 0.8220 0.9175
Toyama 0.7856 0.8014

configurations have been stated in Section IV-B. The AR
representation configurations are set the same as that of FEDM.
The overall performance on the four databases are summarized
in Table IV, where the prediction performance is measured
by SROCC. “SR” refers to sparse representation. As can be
observed in Table IV, the overall SROCC values of SR are
consistently higher than that of AR on the four databases,
which indicates that simulating the internal model with sparse
representation is more effective than with AR representation.
Besides, we inspect the computational time of AR and SR
simulations respectively.

Specifically, we chose a standard image from TID2013
database (i01_01_1.bmp) and record the computational time of
AR and SR respectively. The hardware platform is a Thinkpad
X220 computer with a 2.5GHz CPU and 4G RAM. The software
platform is Matlab R2012a. The running time of AR is 87.70
seconds, while the running time of SR is only 5.03 seconds.
Clearly, the computational time of SR is much shorter than AR,
which verifies sparse representation is much more efficient than
AR representation for quality prediction. Therefore, we verify
that approximating the internal generative model with sparse
representation is not only more effective but also much more
efficient than with AR representation.

F. Impact of Sparsity on Prediction Performance

In sparse representation, sparsity refers to the number of
atoms for representing each image patch, it also refers to the
number of nonzero coefficients in the representation coefficient
vector.

In this section, we investigate the impact of sparsity on the
quality evaluation. To be specific, we conducted experiments
on the CSIQ database by varying the sparsity in FSI. The ex-
perimental results are tabulated in Table V, where the over-
all prediction performance is measured by SROCC. It is noted
that the prediction performance grows as the sparsity increases.
When the sparsity is small, e.g., 1 or 2, the overall prediction
performance is relatively low. While the sparsity becomes big-
ger than 5, the performance of FSI rises to a higher level. This
is because sparse representation with small sparsity can’t well
approximate the internal generative model, which lowers the
prediction performance. For visualization, we show an exam-
ple of represented images with different sparsities in Fig. 3.
It’s clear to see that the reconstructed image with sparsity be-
ing 1 can’t be represented accurately, which leads to bad visual
quality, while the image reconstructed with sparsity equal to

TABLE V
IMPACT OF SPARSITY ON THE PREDICTION PERFORMANCE

Sparsity SROCC

1 0.8220
2 0.8745
3 0.8966
4 0.9084
5 0.9151
6 0.9175
7 0.9186
8 0.9185

Fig. 3. Example of reconstructed images with different sparsities. (a) Recon-
structed image with sparsity = 1. (b) Reconstructed image with sparsity =
6.

6 reveals much better quality. As observed in Table V, when
the sparsity becomes higher than 5, the performance changes
slightly. In addition, a larger sparsity results in higher computa-
tional cost. For properly balancing the prediction performance
and computational cost, we set the default value of sparsity to 6
in FSI.

G. Testing of Different Saliency Models at
Different Proportions

Considering the important characteristic of HVS, i.e., visual
saliency, we define the salient prediction residual image con-
stituted by the l% most salient pixels of the prediction residual
image. In this regard, saliency detection should be performed
in advance. Without loss of generality, we tested seven rep-
resentative saliency models for saliency detection, which are
GBVS [49], IS [52], Covsal [50], SWD [61], LRK [62], FES [63]
and RCSS [64]. In addition, we set l from 10 to 100 at a proper
interval of 10 and conducted experiments on the CSIQ database.
Table VI lists the prediction performance measured by SROCC
and the best performance for each saliency model is marked
in boldface. 100% means all pixels in the prediction residual
image are involved in quality computation, which is also equiv-
alent to no saliency detection for FSI. By observing Table VI,
we find that the best results for all the saliency models are all
higher than that on the proportion of 100%, which confirms tak-
ing visual saliency into consideration can further improve the
predicting ability of FSI. As SROCC of GBVS at 30% achieves
the highest value, we employ GBVS and set l to 30 in FSI
experimentally.
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TABLE VI
OVERALL PREDICTION PERFORMANCE OF DIFFERENT SALIENCY MODELS AT DIFFERENT PROPORTIONS ON CSIQ

Saliency Model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GBVS [49] 0.9149 0.9163 0.9175 0.9147 0.9118 0.9101 0.9094 0.9090 0.9073 0.9069
IS [52] 0.9047 0.9076 0.9096 0.9074 0.9049 0.9031 0.9017 0.9027 0.9045 0.9069
Covsal [50] 0.9100 0.9135 0.9159 0.9144 0.9122 0.9118 0.9104 0.9091 0.9083 0.9069
SWD [61] 0.8967 0.9031 0.9082 0.9087 0.9078 0.9066 0.9053 0.9057 0.9065 0.9069
LRK [62] 0.9072 0.9083 0.9086 0.9097 0.9084 0.9065 0.9049 0.9040 0.9048 0.9069
FES [63] 0.9045 0.9088 0.9119 0.9106 0.9088 0.9072 0.9072 0.9070 0.9063 0.9069
RCSS [64] 0.8997 0.9064 0.9106 0.9081 0.9090 0.9080 0.9081 0.9074 0.9064 0.9069

V. CONCLUSION

In this paper, we have proposed a novel RR IQA metric FSI,
which is based on free-energy principle and sparse representa-
tion. On one hand, the free-energy principle indicates the per-
ception of the human brain is governed by an internal generative
model, by which the brain generates predictions for its encoun-
tered scenes. The discrepancy between the visual input signal
and its brain prediction is closely related to quality of percep-
tions. On the other hand, sparse representation resembles the
strategy for representing natural images in the primary visual
cortex of the brain. Conjunctively, we approximate the internal
generative model with sparse representation and propose FSI ac-
cordingly. In FSI, the reference and distorted images are firstly
predicted by sparse representation. Then the difference between
the entropies of the prediction discrepancies is defined as the
quality index. Experimental results on four large-scale image
databases demonstrate FSI achieves comparative performance
with PSNR and even outperforms SSIM on the CSIQ database,
although it only needs one number of the original image. More-
over, for the same kind of methods, e.g., FEDM and RRED, FSI
outperforms them by a large margin.
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